Другие журналы
|
научное издание МГТУ им. Н.Э. БауманаНАУКА и ОБРАЗОВАНИЕИздатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211. ISSN 1994-0408![]()
Расчет параметров обтекания и акустического шума тандема цилиндров
# 09, сентябрь 2013 DOI: 10.7463/0913.0602256
Файл статьи:
![]() УДК 533.6, 534.83 Россия, МГТУ им. Н.Э. Баумана Введение Снижение шума в авиации и на транспорте является актуальной задачей. Основными источниками шума в авиации являются силовая установка и планер с его элементами механизациями (шасси, предкрылки, закрылки, законцовки крыла, каверны), турбулентный пограничный слой на поверхности летательного аппарата. Другим примером источников шума, возникающих в свободном пространстве, являются механизмы турбулентного перемешивания, характерные для пространственных струй [1-3]. Задачи, связанные с моделированием аэродинамического шума ближнего и дальнего поля, получают все большее распространение среди инженеров, занимающихся экспериментом и вычислительной аэрогидродинамикой. На стыке аэродинамики и акустики возникло научное направление – аэроакустика, которая изучает как процессы аэродинамической генерации акустических полей (звука), акустики движущейся среды, взаимодействия звука с потоком, так и методы моделирования вихревых нестационарных турбулентных течений газа и генерируемых ими акустических полей [1]. В вычислительной аэроакустике существует два основных подхода: прямое численное моделирование и гибридные методы. Поскольку во многих случаях требуется вычисление флуктуирующей части давления, определяющей акустическую компоненту, на расстояниях, значительно превышающих характерный размер исследуемого тела, то подход, связанный с прямым численным моделированием шума, является неэффективным. Альтернативой является определение уровня шума интегральными методами, которые представляют собой двухэтапные методы, основанные на раздельном расчёте генерации шума и его распространения. На первом этапе производится гидродинамический расчёт, в процессе которого информация о нестационарных характеристиках потока сохраняется на так называемых контрольных поверхностях. На втором этапе с использованием этой информации производится расчёт распространения звука до положения слушателя с помощью соответствующих интегральных формул или акустических аналогий. В основу гибридных методов положены математические модели на базе URANS/LES/DES подходов, акустические аналогии (Лайтхилла, Керла,Ффоукс– Вильямса – Хоукингса), а также библиотеки, реализующие алгоритмы дискретных преобразований Фурье [3]. В настоящей работе предложена и апробирована методика моделирования турбулентного обтекания тел и расчета акустического давления и спектра шума в ближнем и дальнем поле в трехмерной постановке на основе акустической аналогии и быстрого преобразования Фурье. Данная методика реализована в открытом пакете OpenFOAMв виде разработанной авторами динамической библиотеки libAcoustics.
1. Описание методики моделирования турбулентного обтекания тел и расчета акустического давления и спектра шума в ближнем и дальнем поле. Анализ исходного кода широко распространенного открытого пакета OpenFOAM показал, что готового решения, которое могло бы использоваться совместно с гидродинамическим расчетом для определения параметров акустического давления и спектра шума не существует. В известных публикациях, где проводились исследования по расчету спектра шума с использованием пакета OpenFOAM, отсутствует какая-либо информация об особенностях программной реализации соответствующих методик. В связи с этим авторами была разработана собственная методика и библиотека libAcoustics, основанная на использовании акустической аналогии Керла и быстрого преобразования Фурье. Созданная библиотека использует механизм динамических библиотекfunctionObjects API, реализованный в объектно-ориентированном языке программирования C++. Данный механизмявляется интерфейсом, дающим пользователю возможность организации пост-процессинга результатов. Механизм functionObject независим от основного решателя OpenFOAMи может быть использован различными приложениями; он позволяет вызывать нужную библиотеку в требуемой момент расчетного времени и проводить расчеты в параллельном режиме. Динамические библиотеки, использующие этот механизм, активно применяются для выбора физических моделей (модели турбулентности, модель переноса среды и др.). В основу механизма functionObjectположен принцип наследования языка C++, который позволяет одному объекту приобретать свойства другого объекта; основная идея его использования заключается в следующем: 1) существует прототип класса, который обеспечивает данные для пост-процессинга и содержит виртуальную функцию для пост-процессинга; 2) пользователем создается собственный новый класс, независимый от данного прототипа, который содержит виртуальные функции для пост-процессинга; 3) реализация пользовательского класса располагается в независимой динамической библиотеке. Список реализации библиотек, использующих механизм functionObject, располагается в специальном массиве (класс с именем functionObjectList); массив таких библиотек располагается в отдельном объекте класса Time. Класс Timeотвечает за исполнение библиотек, основанных на механизме functionObject, в различные моменты расчетного времени. Список всех таких пользовательских библиотек указывается в файле controlDictрасчетного примера OpenFOAM (рис. 1).
Рис. 1. Схема пользовательских объектов, использующих механизм functionObjects
Разработанная библиотека libAcousticsв OpenFOAM состоит из следующих исходных файлов: Curle.C, CurleFunctionObject.C, CurleFunctionObject.H, Curle.H, SoundObserver.C, SoundObserver.H, FoamFftwDriver.C, FoamFftwDriver.H. Для работы библиотеки libAcoustics необходимы следующие параметры. 1) Пользовательские данные. Пользователь перед началом расчета должен заранее задать следующие исходные данные: имена граней (патчей), по которым будет проводится интегрирование, имена полей давления и плотности, начальное и конечное время, диапазон частот, для которых проводится исследование, положение слушателя (микрофона), скорость звука, характерную длину, характерное давление, особенности алгоритма быстрого преобразования Фурье для анализа частоты. Чтение исходных данных реализовано с помощью функции Curle. 2) Распределение поверхностной силы, действующую на жидкость со стороны обтекаемого тела. Для определения поверхностной силы нeобходимо проинтегрировать распределение давления по исследуемым поверхностям. Для этого необходимо знать давление в узлах контрольных объемов и координаты векторов нормалей к исследуемым поверхностям. 3) Способ вычисления производной по времени для поверхностной силы. Производная по времени для поверхностной силы может вычисляться с помощью схемы Эйлера или противопоточной схемы. 4) Акустическое давление, уровень звукового давления (SPL) и спектр шума. Акустическое давления определяется для каждого слушателя (микрофона). Для этого введен новый класс SoundObserver. SPLможет быть получен только для преобразования Фурье для акустического давления, т.к. акустическое давление может быть отрицательным. Для работы с разложениями Фурье выполняется простейшая операция: введен новый класс FoamFftwDriver, использующий библиотеку Fftw3. Этот класс в качестве входных данных использует массив значений акустического давления в различные моменты времени в месте расположения слушателя. После выполнения преобразования Фурье возвращается список частот и амплитуд для акустического давления. Далее вычисляется значение SPLпо известной формуле. 5) Порядок сохранения данных на жесткий диск. Организация сохранения данных на жесткий диск осуществляется с использованием класса OFstream, реализованного в составе пакета OpenFOAM. Для каждого слушателя создаются два новых файла: один для акустического давления в различные моменты времени и другой для результатов преобразования Фурье. 6) Параметры вычислений в параллельном режиме. В случае использования параллельных вычислительных алгоритмов необходимо учитывать следующее: а) исследуемые грани (патчи) могут быть расположены на различных процессорах; для выполнения расчета необходимо «обойти» все процессоры и собрать необходимые данные, это делается с помощью специальных вызовов; б) преобразование Фурье и операции записи могут быть выполнены на одном процессоре (например, мастере). Разработанная библиотека позволяет решать широкий класс исследовательских, проектных и эксплуатационных задач, связанных с моделированием вихревых нестационарных турбулентных течений газа и генерируемых ими акустических полей. В результате ее использования возможно численное определение следующих характеристик: 1) акустического давления при обтекании ЛА; 2) спектра шума в ближнем и дальнем поле; 3) диаграммы направленности шума; 4) оценка вклада отдельных элементов конструкции в общий спектр генерируемого шума.
2. Математическая модель. Предложенная методика включает в себя два основных этапа: расчет параметров течения с использованием соответствующих решателей, входящих в состав пакета OpenFOAM, и акустический расчет на базе разработанной авторами библиотеки libAcoustics. Гидродинамический расчет производится с помощью одного из входящих в состав пакета OpenFOAMрешателей. В данной работе апробирован решатель pisoFoam, различные численные схемы аппроксимации и интегрирования и различные модели турбулентности. Математическая модель, положенная в основу решателя pisoFoam, основана на решении осредненных по Рейнольдсу уравнений Навье – Стокса, которые замыкаются с помощью какой-либо модели турбулентности. Обобщенное уравнение, включающее в себя балансовые соотношения для контрольных объемов и модель турбулентности, в наиболее общем виде в интегральной форме можно записать в виде [4]
где Для решения полученных систем линейных алгебраических уравнения (СЛАУ) для величин Для решения СЛАУ для поправки давления применялся метод PCG (Preconditioned ConjugateGradient) с предобуславливателем DIC (DiagonalIncompleteCholesky). Для моделирования турбулентности использовались модель
Таблица 1. Константы для k-omegaSST модели турбулентности
В таблице 1 приведены коэффициенты для выбранной модели турбулентности. Однопараметрическая модель Спаларта-Аллмараса с одним дифференциальным уравнением для вихревой вязкости. Модель была сконструирована специально для аэрокосмических исследований [5]:
скорректированный вариант
Для расчета акустического давления использовалась аналогия Керла:
Где Данная аналогия успешно применялась для решения различных тестовых задач совместно с решателями в составе пакета OpenFOAM. Аналогия Керла позволяет определять акустический шум в ближнем и дальнем полях. Из результатов эксперимента известно, что для многих интересных с практической точки зрения случаев безразмерные частоты шума лежат в диапазоне 0.1 < St < 2, поэтому допущение о компактности акустической аналогии приемлемо [1]. Для учета трехмерных эффектов в двумерной постановке необходимо введение в акустическую аналогию поправки флуктуации в продольном направлении. Для расчета значения уровня звукового давления SPL (SoundPressureLevel) использовалась формула
3. Описание тестовых задач. В вычислительной аэроакустике существует набор тестовых задач, которые были выбраны специалистами и обсуждались на различных тематических семинарах в разные годы. Для них существует обширный банк экспериментальных данных и результатов вычислительных экспериментов. К таким задачам относятся, в частности, моделирование обтекания профиля крыла, определение шума в выхлопной трубе автомобиля, моделирование обтекания зеркала заднего вида автомобиля. Указанные задачи были также решены с использованием открытого пакета OpenFOAMи разработанной библиотеки libAcoustics. Также проводились поисковые исследования в области моделирования обтекания и генерируемого шума от изолированного профиля и нескольких профилей [6,7], результаты расчетов представлены на рис. 2, 3, расчета обтекания различных тандемных тел [8], расчетная область и геометрия которых представлена на рис. 4, 5.
Рис. 2. Профиль крыла: а) скорость; б) спектр шума
Рис. 3. Два профиля крыльчатки вентилятора а) Q-изоповерхности; б) спектр шума
Рис. 4. Прямоугольный цилиндр и пластина
Дополнительно проводились сравнения с результатами экспериментов по значениям уровня звукового давления SPL. Было получено хорошее согласование результатов расчетов и эксперимента. 4. Тестовая задача об обтекании тандема цилиндров. Рассмотрим более подробно одну из известных тестовых задач вычислительной аэроакустики – задачу о расчете обтекания тандема цилиндров. Соответствующий эксперимент проводился в NASALangleyResearchCenterв BART– BasicResearchAerodynamicTunnel [9]. Данная задача рассматривалась в качестве тестовой во время 1-го семинара BANCWorkshop в г. Стокгольме в 2010 г. и Европейским Концорциумом EUProjectATAAC. Исходные данные для расчетов представлены на рис. 6.
Рис. 6. Танцем цилиндров: a) экспериментальная установка; б) взаимное расположение цилиндров
В ходе эксперимента проводилось определение распределения коэффициента давления
Рис. 7. Коэффициенты: а) давления
Рис. 8. Коэффициент давления: а) 1 цилиндра; б) 2 цилиндра
С помощью технологии 2D-PIV (ParticleImageVelocimetry) проводилось измерение характеристик потока – линий тока (рис. 9). Для визуализации течения на поверхности цилиндров использовались смесь TiO2 и керосина (рис. 10).
Рис. 9. Линии тока, полученные с 2D-PIV Рис. 10. Визуализация потока На рисунке 11 изображены спектры пульсации давления для первого и второго цилиндра для разного положения слушателя, связанного с углом
Рис. 11. Спектр пульсации давления а) первого цилиндра; б) второго цилиндра
Отметим, что для данной тестовой задачи помимо результатов натурного эксперимента имеется значительный объем результатов вычислительных экспериментов, проводившихся различными исследователями [10-13]
5. Расчетная схема для проведения вычислительного эксперимента. При проведении вычислительного эксперимента использовалась двумерная прямоугольная расчетная область с размерами
Рис. 12. Расчетная область и фрагменты двумерной расчетной сетки
Рис. 13. Расчетная область и фрагменты трехмерной расчетной сетки
В расчете использовались следующие исходные данные: число Маха Шаг расчета по времени был принят равным Число Куранта не превышало значения Для расчета акустического шума задавились дополнительные данные: cкорость звука в воздухе В процессе расчета целесообразно определить: а) как влияет дискретизация расчётной области на результат; б) как влияет дискретизация уравнений (порядок аппроксимации схем) на результат; в) какое влияние оказывает выбор модели турбулентности; г) как результат зависит от метода интегрирования уравнений (стационарная или нестационарная постановка задачи). Результатами вычислительного эксперимента, которые в дальнейшем будут использоваться для сравнения с данными эксперимента являются: 1) коэффициенты продольной силы 2) cпектр частот (в Гц или в безразмерном виде – число Струхаля St); 3) спектр шума (уровень звукового давления SPL).
6. Результаты расчета. В ходе вычислительного эксперимента была проведена серия расчетов с использованием решателя pisoFoam и моделей турбулентности Поскольку использовалась акустическая аналогия Кёрла, в которой для расчёта уровня давления фактически входят коэффициенты продольной и нормальной силы, то хорошим критерием проверки на первом этапе может служить сравнение расчётных и экспериментальных значений Таблица 2. Значения
Из таблицы 1 видно, что экспериментальные и расчётные данные имеют существенный разброс даже в средних значениях. Таблица 3 демонстрирует разброс расчетных параметров (число Струхаля, коэффициент продольной силы, коэффициент подъемной силы) в зависимости от выбора модели турбулентности.
Таблица 3. Влияние модели турбулентности на основные параметры В соответствии с этим был выбран ряд тестовых режимов, которые позволили бы определить степень влияния указанных параметров на расчётную оценку коэффициента продольной силы (Таблица 4). Таблица 4. Влияние параметров на оценку коэффициента продольной силы
В процессе предварительных исследований были также определены и анализировались значения модуля скорости и турбулентной вязкости (Рис. 14).
Рис. 14. Визуализация результатов расчета: а) модуль скорости; б) турбулентная вязкость
Как следует из приведённых выше предварительных результатов, параметры расчётной сетки и дискретизации оказывают значительное влияние в первую очередь на коэффициент продольной силы первого цилиндра, в то время как коэффициент продольной силы второго цилиндра остаётся примерно на одном и том же уровне. Результаты, получаемые с помощью стационарных моделей с пристеночными функциями наиболее близки к расчётным данным [10, 11]. Беглый анализ результатов показывает, что при сравнении расчётов с экспериментальными данными необходимо уделять внимание не только настройкам численной модели, но и способам вычисления усреднённой величины исследуемого интегрального параметра. Были построены Qизоповерхности, характеризующие отрывной режим обтекания тандема цилиндров (рис. 15) . На рисунке 16 приведены спектры шума для расчётной модели №4 в точке А. Спектры в других точках отличаются только модулем величины уровня акустического давления.
Рис. 15. Результаты расчета Qизоповерхностей
Полученные значение числа Cтрухаля St=0.24 и интенсивности шума для первого пика близки к экспериментальным значениям (Рис. 10).
Заключение Авторами разработана и реализована в открытом пакете OpenFOAM методика для расчета параметров течения и акустического шума с использованием аналогии Керла. В качестве модельной задачи рассмотрена задача о моделировании обтекания тандема цилиндров и расчета возбуждаемого при этом шума. Результаты численного расчета хорошо согласуются с известными результатами экспериментов, что подтверждает адекватность и эффективность предложенной методики. В дальнейшем планируется выполнить расчёты в трёхмерной постановке с целью установления степени влияния продольных пульсаций гидродинамических величин на прогнозируемый уровень акустического давления, а также добавить в библиотеку libAcousticsакустическую аналогию Ффоукс– Вильямс – Хоукингса. Расчеты проводились с использованием вычислительного кластера web-лаборатории UniHUB (www.unihub.ru) в параллельном режиме. Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации.
Список литературы 1. Голдстейн М.Е. Аэроакустика : пер. с англ. М.: Машиностроение, 1981. 294 c. 2. Мунин А.Г., Самохин И.Ф., Шипов Р.А. и др. Авиационная акустика. В 2 ч. Ч. 1. Шум на местности дозвуковых пассажирских самолетов и вертолетов / Под ред. А.Г. Мунина. М. Машиностроение, 1986. 243 с. 3. Wagner C., Hüttl T., Sagaut P. Large–Eddy Simulation for Acoustics. N.Y.: Cambridge Univ. Press, 2007. 471 p. 4. Weller H.G., Tabor G., Jasak H., Fureby C. A tensorial approach to computational continuum mechanics using object oriented techniques // Computers in Physics.1998. Vol. 12, no. 6. P. 620-631. 5. Белов И.А., Исаев С.А. Моделирование турбулентных течений: учеб. пособие. СПб.: БГТУ, 2001. 108 с. 6. Verhoeven O. Trailing Edge Noise Simulations using IDDES in OpenFOAM. Master Thesis. Delft University of Technology. 2011. 139 p. 7. Christophe J., Moreau S., Anthoine J. Trailing Edge Noise Computation of a Fan Blade Profile // 10eme Congres Francais d’Acoustics. Lyon, France. 2010. P. 6. 8. Mohamed Sukri Mat Ali, et al. Aeolian tones generated by a square cylinder with adetached flat plate // 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference), 2011. AIAA 2011-2779. P. 1-20. 9. Jenkins L.N., Neuhart D., McGinley C., Choudhari M., Khorrami M.R. Measurements of Unsteady Wake Interference between Tandem Cylinders // 36th AIAA Fluid Dynamics Conference and Exhibit, 2006. AIAA-2006-3202. P. 1-18. 10. Con J. Doolan. Flow and Noise Simulation of the NASA Tandem Cylinder Experiment using OpenFOAM // 15th AIAA/CEAS Aeroacoustics Conference, 2009. AIAA-2009-3157. P. 1-22. 11. Weinmann M., Sandberg R.D., Doolan C.J. Flow and Noise Predictions for a Tandem Cylinder Configuration Using Novel Hybrid RANS/LES Approaches // 16th CEAS/AIAA Aeroacoustics Conference, Stockholm, Sweden, 2010. AIAA Paper 2010-3787. 12. Weinmann M. Simulation Strategies for Complex Turbulent Flows. PhD Thesis. University of Southampton, October 2011. P. 1-311. 13. Khorrami M.R., Choudhari M.M., Lockard D.P., Jenkins L.N., McGinley C.B. Unsteady Flowfield Around Tandem Cylinders as Prototype Component Interaction in Airframe Noise // AIAA Journal. August 2007. Vol. 45, no. 8. P. 1930-1941. 14. Bruschi G., Nishioka T., Tsang K., Wang R. A Comparison of Analytical Methods. Drag Coefficient of a Cylinder // MAE171A. 2003. Available at: http://www.disasterzone.net/projects/docs/mae171a/water_tunnel_experiment.pdf , accessed 01.08 2013. Публикации с ключевыми словами: давление, частота, математическая модель, сходимость, спектр, уравнения, модель турбулентности, расчетная область, неструктурированная сетка, цилиндр, акустическая аналогия, метод крупных вихрей Публикации со словами: давление, частота, математическая модель, сходимость, спектр, уравнения, модель турбулентности, расчетная область, неструктурированная сетка, цилиндр, акустическая аналогия, метод крупных вихрей Смотри также:
Тематические рубрики: Поделиться:
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|