Другие журналы
|
научное издание МГТУ им. Н.Э. БауманаНАУКА и ОБРАЗОВАНИЕИздатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211. ISSN 1994-0408![]()
Обратная магнитостатическая задача для ферромагнетиков
# 01, январь 2014 DOI: 10.7463/0114.0695966 УДК: 537.62, 620.1
Файл статьи:
![]()
Введение Пассивная диагностика ферромагнитных материалов на основе решения обратной магнитостатической задачи, то есть восстановление намагниченности тела по измеренному вблизи его поверхности распределению магнитного поля, является важной задачей радиофизики и лежит в основе современных магнитных методов микроструктурного анализа, томографии и неразрушающего контроля. Понятие магнитного микрострутурного анализа введено Р.И. Янусом [1], как совокупность электромагнитных методов, позволяющих проверять изделия из ферромагнитных материалов на отсутствие в них структурных дефектов В России эта задача изучается почти в течение столетия многими исследователями как расчетным путем с использованием различных аппроксимаций, так и экспериментально, главным образом применительно к ферромагнетикам. В качестве универсальной модели дефекта микроструктуры обычно принимается разработанная В.К. Аркадьевым [2] эллипсоидная модель. Такая форма дефекта позволяет получать решения и для других форм, например для шара, узкой трещины, которая может быть уподоблена очень тонкому или удлиненному эллипсоиду. С. В. Вонсовский [3] также рассматривал дефект в виде эллипсоида и показал, что сферический дефект действует наружу как диполь с моментом, помещенным в центр сферы. В случае трехосного эллипсоида нельзя считать, что созданное им внешнее поле эквивалентно действию некоторого диполя, помещенного в центре эллипсоида. Однако для предельных случаев удлиненный эллипсоид вращения эквивалентен дефекту в виде волосовины, а сжатый эллипсоид вращения соответствует дефекту в виде трещины. Сложность решения обратной магнитостатической задачи во многом обусловлена нелинейностью магнитных свойств, и следовательно сложной связью между параметрами дефектов и магнитных распределений. Так, А.Б. Сапожников [4] показал, что внутренние дефекты ферромагнитных материалов создают существенно нелокальные распределения полей рассеяния. Попытка описать нелинейные магнитные свойства через нелинейные дифференциальные уравнения для потенциала магнитного поля проделаны в работе Р.В. Загидулина [5]. При этом различные методы решения обратной задачи магнитостатики, оперируют с моделями, позволяющими исследовать образцы только в состоянии технического насыщения [1], поскольку ферромагнетики при меньших полях обладают остаточной намагниченностью, которая связана с микроструктурой материала неоднозначно [6] и существенно зависит от механических напряжений [7]. Следует отметить, что регулярные сообщения в различных научных журналах о разработке и использовании нового математического и программного обеспечения для решения задач магнитостатики свидетельствует о том, что эта область вычислительной электродинамики еще далека от своего логического завершения. Так, решение обратной магнитостатической задачи для слабонамагниченных ферромагнетиков считается невозможным из-за влияния магнитной предыстории, то есть остаточной намагниченности [8]. Целью статьи является формулировка физических основ микроструктурного анализа ферромагнитных образцов в геомагнитном поле без дополнительного подмагничивания. Такой способ анализа является пассивным и более технологичным, чем рассмотренные в работах [1 – 8]. В отличие от работы [9] рассматривается двумерное распределение полей рассеяния. Новизной предлагаемого подхода является параметризация обратной магнитостатической задачи путем разделения намагниченности на три составляющие в зависимости от физической природы возникновения для ферромагнетиков, по которым не протекали токи намагничивания: медленно меняющаяся намагниченность, дипольная составляющая, отвечающая за нарушение структуры объекта диагностики и шумовая составляющая. Магнитная предыстория объекта диагностики учитывается путем восстановления медленно меняющейся намагниченности.
Список литературы
Публикации с ключевыми словами: Параметрический анализ, обратная задача, магнитная микротопология Публикации со словами: Параметрический анализ, обратная задача, магнитная микротопология Смотри также: Тематические рубрики: Поделиться:
|
|
||||||||||||||||||||||||||||||||||
|