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On fundamental solutions, transition probabilities
and fractional derivatives
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The aim of this note is to clarify the connection between different notions of fundamental solution and
to outline the interplay between transitional probabilities of stochastic processes, evolution semigroups,
evolution equations and their fundamental solutions. We discuss different notions of the fundamental
solution for L�evy processes with infinitely smooth symbol and for stable subordinators. In the case of
L�evy processes with infinitely smooth symbol we find the fundamental solution of the corresponding
forward evolution equation and recover the Duhamel formula for the solution of the Cauchy problem
for this equation. In the case of the 1/2-stable subordinator, we find the transition density by solving
an evolution equation with the (weak) Riemann | Liouville fractional derivative and show that the
Weyl fractional derivative is the negative of the adjoint to the Riemann | Liuoville (weak) fractional
derivative.
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Introduction

In the series of papers [2, 3, 4, 5] a technique to construct evolution semigroups (Tt)t≥0 generated
by some operators L was developed. In the frame of the suggested technique the following fact
was used: the identity

∞∫
s

Tt−s[ξ
′(t) + Lξ(t)] dt = −ξ(s) (1)

is true for each \test-function" ξ: R → Dom(L) and each s ∈ R. Here Dom(L) is the domain of
the generator L. The object (Tt)t≥0, satisfying the identity (1) with a given operator L was called
fundamental solution of ∂t + L. It was shown in the paper [1, Th. 4.1] that this object (Tt)t≥0 is
indeed the semigroup generated by L and there are no other candidates except ∂t + L to fulfill
(1) with the given (Tt)t≥0. The technique of [2, 3, 4, 5] was used in [1] in particular to discuss
evolution semigroups generated by additive perturbations of the (1/2)-stable subordinator, i.e. of
the operator L equal to the Weyl fractional derivative of order 1/2.
This note is supposed to be an addition to the discussion of [1]. The aim of this note is to clarify

the connection between the notion of fundamental solution presented above and the traditional
notion used in the Theory of Partial Differential Equations and in Functional Analysis (cf. [7])
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and to outline the interplay between transitional probabilities of stochastic processes, evolution
semigroups, evolution equations and their fundamental solutions. To make the picture as clear as
possible we restrict the discussion to the case of L�evy processes with infinitely smooth symbol, e.g.
with compactly supported L�evy measure, and to a class of subordinators. In the first case we find
the (traditional) fundamental solution of the corresponding forward evolution equation, recover
the Duhamel formula for the solution of the Cauchy problem for this equation and arrive at the
identity (1).
In the case of the (1/2)-stable subordinator, the transition density is also obtained explicitly by

solving an evolution equation with the (weak) Riemann{Liouville fractional derivative. To this end
we show that the Weyl fractional derivative is the negative of the adjoint to the Riemann{Liuoville
(weak) fractional derivative and again arrive at the identity (1).

1. Notations and definitions

Below we will use standard techniques of Fourier analysis and the Schwarz theory of distribu-
tions, for which we refer the reader to [7].
Let D(Rd) := C∞

c (Rd) be the space of test functions, i.e. infinitely smooth functions with
compact supports. Let D′(Rd) be the space of all generalized functions (distributions) on Rd, i.e.
the space dual to D(Rd) taken with the standard topology. Let S(Rd) be the Schwartz space of
tempered functions. For each function ϕ ∈ S(Rd) let F [ϕ] be its Fourier transform defined as
F [ϕ](p) =

∫
Rd

e−ip·qϕ(q) dq and let F−1 be its inverse. Denote the space of tempered distributions

as S ′(Rd), S ′(Rd) ⊂ D′(Rd). Denote the dual pairing between D′(Rd) and D(Rd) (and between
S ′(Rd) and S(Rd)) as 〈·, ·〉. Each locally absolutely integrable function f ∈ L1

loc(Rd) corresponds
to a regular generalized function (distribution) f ∈ D′(Rd) acting by the formula 〈f, ϕ〉 :=∫
Rd

f(x)ϕ(x)dx, ϕ ∈ D(Rd). We use the same notation 〈f, g〉 for the integral
∫

Rd

f(x)g(x)dx for

all such functions f , g: Rd → C that the integral is well-defined. Any σ-finite Borel measure
µ defines a distribution

{
µ

∣∣∣ 〈µ, ϕ〉 =
∫

Rd

ϕ(x)µ(dx)
}
, ϕ ∈ D(Rd). The Dirac delta-function δ

is a distribution corresponding to a Borel measure that assigns unit mass to the point x = 0, i.e.
〈δ, ϕ〉 = ϕ(0). Note, that δ ∈ S ′(Rd) ⊂ D′(Rd).

Fundamental solution. LetL be a linear operator onD′(Rd) (resp. on S ′(Rd)). A fundamental
solution of the operator L is any function E ∈ D′(Rd) (resp. E ∈ S ′(Rd)) solving in D′(Rd) (resp.
in S ′(Rd)) the equation

LE = δ,

i.e. for each test function ϕ ∈ D′(Rd) (resp. ϕ ∈ S ′(Rd)) holds the identity

〈LE , ϕ〉 = ϕ(0).

Pseudo-differential operators on the space of tempered distributions. For each f ∈ S ′(Rd)

its Fourier transform F [f ] is defined by 〈F [f ], ϕ〉 = 〈f, F [ϕ]〉, ϕ ∈ S(Rd). The operation
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of multiplication on an infinitely differentiable function ψ : Rd → C, which grows at infinity
with all its derivatives at most as a polynomial, is also well defined in S ′(Rd) by the formula
〈ψf, ϕ〉 := 〈f, ψϕ〉. In the sequel ψ ∈ C∞(Rd) is a continuous negative definite function, i.e. ψ
is given by the Levy | Khinchine formula

ψ(p) = a(q) + i`(q) · p+ p ·Q(q)p+
∫
y 6=0

(
1− eip·y +

ip · y
1 + |y|2

)
N(dy), p ∈ Rd,

where, for each fixed q ∈ Rd, `(q) ∈ Rd, Q(q) is a positive semidefinite symmetric matrix and
ν(dy) is a measure kernel on Rd \ {0} such that∫

y 6=0

|y|2

1 + |y|2
N(dy) <∞.

Note, that ψ grows at infinity with all its derivatives not faster than a polynomial [6, Th. 3.7.13].
A pseudo-differential operator with the symbol ψ is defined on S(Rd) as a composition F−1ψF .
Note also that F−1ψ(ξ)F = Fψ(−ξ)F−1. The extension of this operator to the space S ′(Rd) is
defined by

〈F−1ψFf, ϕ〉 := 〈f, F [ψ(F−1ϕ)]〉, ϕ ∈ S(Rd), f ∈ S ′(Rd).

Convolution of distributions. The operation of convolution ∗ is defined for several distribu-
tions f, g ∈ D′(Rd) by the formula

〈f ∗ g, ϕ〉 := �f(x)g(y), ϕ(x+ y)�.

Here�·, ·� is the dual pairing betweenD′(Rd×Rd) andD(Rd×Rd), the distribution f(x)g(y) ∈
D′(Rd × Rd) is a direct product of f and g and it is supposed that the distribution f(x)g(y) is
correctly defined on all functions ϕ(x+y), ϕ ∈ D(Rd), although ϕ(x+y) do not lie inD(Rd×Rd)

any more. In the case f , g are regular distributions, one has

�f(x)g(y), ϕ(x+ y)� :=
∫
Rd

∫
Rd

f(x)g(y)ϕ(x+ y) dxdy.

Fundamental solution of a convolution operator. Let D′
+ ⊂ D′(R) be the set of all gen-

eralized functions, whose supports are in [0,+∞). The set D′
+ is a convolution algebra, i.e.

associative and commutative algebra with the operation of convolution ∗, and the unit is the Dirac
delta-function δ. Each element f ∈ D′

+ defines a convolution operator Lf ≡ f∗ such that for all
u ∈ D′

+ we have Lf (u) = f ∗ u. A fundamental solution of a convolution operator Lf (if exists)
is a function Ef ∈ D′

+ such that Lf (Ef ) ≡ f ∗ Ef = δ. Therefore, the fundamental solution Ef is
an inverse element to f in the convolution algebra D′

+.

The (weak) Riemann | Liouville fractional derivative. Let β ∈ R. Consider a distribution
(i.e. a generalized function) fβ ∈ D′

+ defined by the formula

fβ =


η(x)

Γ(β)
xβ−1, x ∈ R, β > 0;

f
(N)
β+N , β +N > 0, β ≤ 0.

(2)
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Here Γ is the Euler gamma-function, η is the Heaviside function and f (N) is the N th derivative
of the generalized function f . Therefore, f1 = η, f0 = f ′1 = δ and for each β, γ ∈ R we have
fβ ∗ fγ = fβ+γ . Hence for each β ∈ R the fundamental solution Efβ

of a convolution operator Lfβ

exists and Efβ
= f−β . For β = −n, n ∈ N, we have f−n = δ(n), i.e. Lf−n(u) = f−nu = u(n) for

all u ∈ D′
+. Moreover, for β = n, n ∈ N we have fn = f1 ∗ · · · ∗ f1 and Lfn(u) = η ∗ · · · ∗ η ∗ u

is a n-fold antiderivative of the generalized function u. For all u ∈ D′
+ we call Lfβ

u the (weak)
Riemann | Liouville fractional derivative of u when β < 0, and the Riemann | Liouville
fractional integral of u when β > 0. For the (weak) Riemann | Liouville derivative of the order
ν > 0 we will also use the notation ∂νx , i.e. ∂νxu(x) := Lf−ν (u)(x) ≡ f−ν ∗ u(x).

Laplace transform of distributions. For each a ≥ 0 defineD′
+(a) as a set of such functions f

from D′
+ that f(x)e−sx ∈ S ′+ ≡ D′

+ ∩ S ′(R) for all s > a. For each a ≥ 0 the set D′
+(a) is called

the set of originals with the growth rate up to a. Then S ′+ ⊂ D′
+(0) ⊂ D′

+(a1) ⊂ D′
+(a2) for all

0 ≤ a1 ≤ a2. Note that S ′+ and D′
+(a) are convolution subalgebras of D′

+ for all a ≥ 0.
Let f ∈ D′

+(a). For arbitrary fixed s > a define the Laplace transformL[f ] of f by the formula

L[f ](p) = 〈f(x)e−sx, η(x)e−(p−s)x〉,

where 〈·, ·〉 is the dual pairing between the space of generalized functions S ′+ and the space of test
functions S+ = {ϕ: R → C | η(x)ϕ(x) = η(x)ϕ(x) for some ϕ ∈ S(R)}.
Note that for each β ∈ R we have fβ ∈ D′

+(a) for all a > 0 and L[fβ] = p−β . Moreover, the
Laplace transformL transforms a convolution into a product: L[f∗g] = L[f ]L[g] for f, g ∈ D′

+(a).
Therefore, the Laplace transform of the (weak) Riemann | Liouville fractional derivative (of the
order ν > 0) of a function u ∈ D′

+(a) has the form

L[∂νxu] = L[f−ν ∗ u] = pνL[u].

2. Fundamental solutions, evolution semigroups and transition probabilities

Let {Xt}t≥0 be a L�evy process on Rd. Then the distribution µ := PX1 of a random variableX1

is infinitely divisible and defines a convolution semigroup {µt}t≥0 on Rd. The transition function
Pt(x,B) of the L�evy process {Xt}t≥0 is then defined by

Pt(x,B) := µt(B − x), t ≥ 0, x ∈ Rd, B ∈ B(Rd).

Using the convolution semigroup {µt}t≥0, one can construct two evolution semigroups on the
space C∞(Rd) of continuous vanishing at infinity functions: the backward semigroup (Tt)t≥0 and
the forward semigroup (T ∗t )t≥0. These semigroups are defined for f ∈ C∞(Rd) as follows:

Ttf(x) := E[f(x+Xt)] =
∫
Rd

f(x+ y)µt(dy) =
∫
Rd

f(y)Pt(x, dy);

T ∗t f(x) := E[f(x−Xt)] =
∫
Rd

f(x− y)µt(dy) = f ∗ µt(x).
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Proposition 1. The semigroups Tt and T ∗t can be naturally extended to the space L2(Rd) and
these extensions are adjoint, i.e. for all f, g ∈ L2(Rd) one has

〈Ttf, g〉 = 〈f, T ∗t g〉.

Moreover, operators T ∗t are pseudo-differential operators with symbol e−tψ and operators Tt are
pseudo-differential operatorswith symbol e−tψ(−·) for some continuous negative definite functionψ.

Proof. Indeed, for all f, g ∈ C∞(Rd) ∩ L2(Rd)

〈Ttf, g〉 =
∫
Rd

Ttf(x)g(x) dx =
∫
Rd

∫
Rd

f(x+ y)µt(dy)g(x) dx =

∫
Rd

∫
Rd

f(z)g(z − y)µt(dy) dz =
∫
Rd

f(z)T ∗t g(z) dz = 〈f, T ∗t g〉.

By the Bochner theorem there exist a unique continuous negative definite function ψ such that
F [µt] = e−tψ. Then, using the properties of convolution and Fourier transform, one has for
f ∈ S(Rd)

T ∗t f = f ∗ µt = F−1
[
F [f ∗ µt]

]
= F−1

[
F [f ]F [µt]

]
= F−1

[
e−tψF [f ]

]
,

i.e. the semigroup T ∗t is a family of pseudo-differential operators with the symbol e−tψ. Let now
L be the generator of (Tt)t≥0 and L∗ be the generator of (T ∗t )t≥0. Hence the generator L∗ is also a
pseudo-differential operator with the symbol −ψ. Further, one has for f, g ∈ S(Rd)

〈f, T ∗t g〉 = 〈f, F−1
[
e−tψF [g]

]
〉 = 〈F

[
e−tψF−1[f ]

]
, g〉 = 〈F−1

[
e−tψ(−·)F [f ]

]
, g〉 = 〈Ttf, g〉,

i.e. the semigroup Tt is a family of pseudo-differential operators with the symbol e−tψ(−·). And
hence the generator L is a pseudo-differential operator with the symbol−ψ(−·). Moreover, for all
f, g ∈ S(Rd) one has 〈Lf, g〉 = 〈f, L∗g〉. The proposition is proved.

Sinceψ ∈ C∞(Rd) grows at infinity with all its derivatives not faster than a polynomial then for
all ϕ ∈ S(Rd) the functions F−1

[
−ψF [ϕ]

]
and F−1

[
−ψ(−·)F [ϕ]

]
are well defined and belong

again to S(Rd). Hence one can define the operators L and L∗ on the space S ′(Rd) by the formulas
Lf := F−1

[
−ψ(−·)F [f ]

]
and L∗f := F−1

[
−ψF [f ]

]
respectively, i.e. for each f ∈ S ′(Rd) and

each ϕ ∈ S(Rd) one has:

〈L∗f, ϕ〉 :=
〈
F−1

[
−ψF [f ]

]
, ϕ

〉
=

〈
f, F

[
−ψF−1[ϕ]

]〉
= 〈f, Lϕ〉

and vice versa 〈Lf, ϕ〉 := 〈f, L∗ϕ〉.

Connections between semigroups, evolution equations and their fundamental solutions.
Consider now the Cauchy problem in Rd

∂f

∂t
(t, x) = L∗f(t, x),

f(0, x) = f0(x).
(3)
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Here f0 ∈ S(Rd) and the problem is well-posed in L2(Rd). The theory of evolution semigroups
provides the solution of (3) in the form

f(t, x) = T ∗t f0(x).

This classical Cauchy problem (3) can be also transformed into the generalized one in a standard
way (see [7]): let f(t, x) be a solution of (3). For each t < 0 and all x ∈ Rd define f(t, x) := 0

and consider the function f as an element of S ′(R× Rd). Then the weak derivative ∂tf of f with
respect to the variable t is calculated as follows:

∂tf(t, x) =
∂f

∂t
(t, x) + f0(x)δ(t),

here ∂f

∂t
is the classical derivative and f0 is the initial data of the Cauchy problem (3). And hence

the solution of the classical Cauchy problem (3) solves the equation

∂tf(t, x)− L∗f(t, x) = f0(x)δ(t) (4)

in S ′(R× Rd).
Assume that a fundamental solution E of the operator ∂t − L∗ in S ′(R × Rd) exists. If L∗ is

a local operator than our assumption is true (see [7]) and the solution of (4) is given then by the
Duhamel formula

f(t, x) = [E(t, x)] ∗ [f0(x)δ(t)] = [E(t, ·) ∗ f0](x). (5)

Proposition 2. The Duhamel formula (5) is also true in the case when L∗ is the generator of
the L�evy process Xt, whose symbol ψ is of class C∞(Rd).

Proof. Let us solve the equation ∂tE−L∗E = δ inS ′(R×Rd). Apply the Fourier transformwith
respect to the variable x. Let F [E(t, ·)](y) = Ê(t, y). Then we have F [∂tE(t, ·)](y) = ∂tÊ(t, y),
F [L∗E(t, ·)](y) = −ψ(y)[Ê(t, y)] and F [δ(t, ·)](y) = δ(t). Therefore, we obtain

∂tÊ(t, y) + ψ(y)Ê(t, y) = δ(t),

i.e. Ê(·, y) is the fundamental solution of an ordinary (with respect to the variable t, y is a
parameter) differential operator L̂y = ∂t + ψ(y). Let us find the fundamental solution of L̂y
using the Laplace transform with respect to the variable t. Let L[Ê(t, y)](s) = Ê(s, y). Then
L[∂tÊ(t, y)](s) = sÊ(s, y) and L[δ(t)](s) = 1. Therefore, we get

sÊ(s, y) + ψ(y)Ê(s, y) = 1,

i.e.
Ê(s, y) =

1

s+ ψ(y)
.

Hence Ê(t, y) = e−tψ(y)η(t) with the Heaviside function η. And, therefore,

E(t, x) = η(t)F−1[e−tψ](x).
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Since ψ(·) is a continuous negative definite function, the function e−tψ(·) is positive definite and
its inverse Fourier transform is the measure µt, i.e. E(t, ·) = η(t)µt. Therefore, for all t ≥ 0 and
x ∈ Rd

[E(t, ·) ∗ f0](x) =
∫
Rd

f0(x− y)µt(dy) = T ∗t f0(x) = f(t, x),

i.e. the Duhamel formula (5) indeed solves the Cauchy problem (3).

Connectionbetweendifferent notions of the fundamental solution. The identity∂tE−L∗E =

δ in S ′(R× Rd) means that for each ϕ ∈ S(R× Rd) one has

〈∂tE − L∗E , ϕ〉 = 〈δ, ϕ〉 = ϕ(0, 0).

Let us fix s ∈ R, x ∈ Rd. With a linear change of variables t 7→ t − s, y 7→ y − x one can show
that the generalized function (distribution) Es,x ∈ S ′(R× Rd),

Es,x(t, dy) := E(t− s, dy − x),

solves in S ′(R × Rd) the equation ∂tEs,x − L∗Es,x = δs,x with the shifted Dirac delta-function
δs,x such that 〈δsx, ϕ, =〉ϕ(s, x). The function Es,x is usually called a fundamental solution with
singularity at (s, x). Therefore, for each ϕ ∈ S(R× Rd) one has:

ϕ(s, x) = 〈∂tEsx− L∗Es,x, ϕ, =〉〈Esx,−∂tϕ− Lϕ, =〉

−
∫
R

dt
∫
Rd

[∂tϕ(t, y) + Lϕ(t, y)]η(t− s)µt−s(dy − x) =

−
+∞∫
s

∫
Rd

[∂tϕ(t, y) + Lϕ(t, y)]Pt−s(x, dy) dt.

Therefore, the identity (1) (with ξ(t) := ϕ(t, ·)) is recovered for this particular case in the form:

+∞∫
s

∫
Rd

[∂tϕ(t, y) + Lϕ(t, y)]Pt−s(x, dy) dt = −ϕ(s, x), ϕ ∈ C∞
c (R× Rd) ⊂ S(R× Rd).

3. Fractional derivatives and fundamental solutions

Define now the Weyl fractional derivative (∂νx)
∗ of order ν ∈ (0, 1) for all test functions

ϕ ∈ D(R) by the formula

(∂νx)
∗(ϕ)(x) =

1

Γ(1− ν)

+∞∫
x

(y − x)−νϕ′(y) dy.

Proposition 3. The operator −(∂νx)
∗ is adjoint to the weak Riemann | Liouville derivative

(∂νx) in the following sense: for all ϕ ∈ D(R) and g ∈ D′
+(R) ⊂ D′(R) one has

〈∂νxg, ϕ〉 = −〈g, (∂νx)
∗ϕ〉.
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Proof. Indeed, using the rule of differentiation of a convolution one has

〈∂νxg, ϕ〉 = 〈f−ν ∗ g, ϕ〉 = 〈f ′1−ν ∗ g, ϕ〉 = 〈(f1−ν ∗ g)′, ϕ〉 = −〈g ∗ f1−ν , ϕ
′〉 =

−�f1−ν(y)g(x), ϕ
′(x+ y)� =

〈
g(x), 〈f1−ν , ϕ

′(x+ ·)〉
〉

= −〈g, (∂νx)
∗ϕ〉.

Here we used the fact that, since f1−ν ∈ L1
loc(R) is a regular distribution, one has

〈f1−ν , ϕ
′(x+ ·)〉 =

∫
R

f1−ν(y)ϕ
′(x+ y) dy =

1

Γ(1− ν)

+∞∫
x

(z − x)−νϕ′(z) dz = (∂νx)
∗ϕ(x).

Connection between different notions of the fundamental solution. LetD′
+(R2) be the set of

generalized functions from D′(R2) having supports in the quadrant {(t, x) ∈ R2 | t ≥ 0, x ≥ 0}.
Let ν ∈ (0, 1). Let there exists a function Eν(t, x) ∈ D′

+(R2) which is a fundamental solution of
the operator Lν := ∂t + ∂νx with the weak Riemann | Liouville fractional derivative ∂νx , i.e. Eν

solves in D′(R2) the equation LνEν = δ. As in the previous Subsection fix s ∈ R and y ∈ R.
With a linear change of variables t 7→ t− s, x 7→ x− y one can show that the generalized function
(distribution) Eνs,y ∈ D′(R2),

Eνs,y(t, x) := Eν(t− s, x− y),

i.e.
〈Eνs y, ϕ(·, ·)〉 = 〈Eν , ϕ(·+ s, ·+ y)〉,

solves in D′(R2) the equation ∂tEνs,y + ∂νxEs,y = δs,y with the shifted Dirac delta-function δs,y.
Hence

ϕ(s, y) = 〈δsy, ϕ〉 = 〈∂tEνs y + ∂νxEs,y, ϕ〉 = −〈Eνs y, ∂tϕ+ (∂νx)
∗ϕ〉.

Assume now that Eν is a regular distribution (it is so, e.g., for ν = 1/2 due to Lemma below).
Then for each test function ϕ(t, x) ∈ D(R2) the function Eν(t, x) satisfies the identity

∞∫
s

∞∫
y

Eν(t− s, x− y)[∂tϕ(t, x) + (∂νx)
∗ϕ(t, x)] dxdt = −ϕ(s, y), s, y ∈ R. (6)

This formula once again recovers the identity (1) for the case of ν-stable subordinators.
Lemma 1. A fundamental solution of the operator Lν = ∂t + ∂νx for ν = 1/2 is the function

E1/2(t, x) =
t

2
√
πx3

e−
t2

4xη(t)η(x).

Proof. Let us solve the equation LνEν = δ in D′(R2). This equation is equivalent to
∂tEν(t, x) + ∂νxEν(t, x) = δ(t)δ(x). Applying Laplace transform with respect to the variable x to
the generalized functions in both sides of the last equation and denoting Eν(t, p) = L[Eν(t, ·)](p)
we get

∂tEν(t, p) + pνEν(t, p) = δ(t).
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Applying Laplace transformwith respect to the variable t to the generalized functions of the variable
t in both sides of the last equation and denoting Gν(s, p) = L[Eν(·, p)](s) we get

sGν(s, p) + pνGν(s, p) = 1.

Therefore, Gν(s, p) =
1

s + pν
. Hence using the tables of Laplace transforms, one gets

Eν(t, p) = e−tp
ν

η(t),

i.e. E1/2(t, p) = e−t
√
pη(t). Once again, using the tables of Laplace transforms one gets that

E1/2(t, x) =
t

2
√
πx3

e−
t2

4xη(t)η(x).

Since the function E1/2(t, x) is a regular distribution and belongs to the set D′
+(R2) then the

equality (6) for ν = 1/2 and E1/2(t, x) holds.
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Î ôóíäàìåíòàëüíûõ ðåøåíèÿõ, ïåðåõîäíûõ âåðîÿòíîñòÿõ
è äðîáíûõ ïðîèçâîäíûõ

Áóòêî ß.À.1,* *

1Ðîññèÿ, ÌÃÒÓ èì. Í.Ý. Áàóìàíà

Êëþ÷åâûå ñëîâà: ýâîëþöèîííûå ïîëóãðóïïû; ôóíäàìåíòàëüíîå ðåøåíèå; äðîáíàÿ ïðîèçâîä-
íàÿ; ñóáîðäèíàòîð

Â ñåðèè íåäàâíèõ ðàáîò Ê. Áîãäàíà, Â. Õàíñåíà, Ò. ßêóáîâñêîãî, Ê. Øèïêîâñêîãî, Ñ. Ñè-
äîðà [2, 3, 4, 5] áûëà ðàçâèòà òåõíèêà ïîñòðîåíèÿ ýâîëþöèîííûõ ïîëóãðóïï, ïîðîæäåííûõ
íåêîòîðûìè çàäàííûìè îïåðàòîðàìè. Â ðàìêàõ ïðåäëîæåííîé òåõíèêè èñïîëüçîâàëñÿ òîò
ôàêò, ÷òî ïîëóãðóïïà ÿâëÿåòñÿ ÿäðîì îòðèöàòåëüíîãî ëåâîãî îáðàòíîãî îïåðàòîðà ê ñóììå
âðåìåíí�îé ïðîèçâîäíîé è ãåíåðàòîðà ýòîé ïîëóãðóïïû. È ýòî ÿäðî íàçûâàëîñü (ñëàáûì)
ôóíäàìåíòàëüíûì ðåøåíèåì äàííîé ñóììû. Ýòîò ôàêò áûë äîêàçàí â ñòàòüå Ê. Áîãäàíà,
ß.À. Áóòêî è Ê. Øèïêîâñêîãî [1], à èìåííî, áûëî ïîêàçàíî, ÷òî ïîëóãðóïïà, ïîðîæäåííàÿ
çàäàííûì îïåðàòîðîì, äåéñòâèòåëüíî ÿâëÿåòñÿ (ñëàáûì) ôóíäàìåíòàëüíûì ðåøåíèåì óïî-
ìÿíóòîé âûøå ñóììû, è òîëüêî åå. Â óêàçàííîé ñòàòüå òåõíèêà Ê. Áîãäàíà è åãî ñîàâòîðîâ
áûëà èñïîëüçîâàíà äëÿ îáñóæäåíèÿ ýâîëþöèîííûõ ïîëóãðóïï, ïîðîæäåííûõ àääèòèâíûìè
âîçìóùåíèÿìè (1/2)-óñòîé÷èâîãî ñóáîðäèíàòîðà, ò.å. îïåðàòîðà äðîáíîéïðîèçâîäíîéÂåéëÿ
ïîðÿäêà 1/2.
Íàñòîÿùàÿ ðàáîòà ñëóæèò äîïîëíåíèåì ê âûøåíàçâàííîé ñòàòüå. Öåëüþ ÿâëÿåòñÿ ïðî-

ÿñíåíèå âçàèìîñâÿçè ìåæäó (ñëàáûì) ôóíäàìåíòàëüíûì ðåøåíèåì, îïèñàííûì âûøå, è
òðàäèöèîííûì ïîíÿòèåì ôóíäàìåíòàëüíîãî ðåøåíèÿ, èñïîëüçóåìûì â òåîðèè óðàâíåíèé ñ
÷àñòíûìè ïðîèçâîäíûìè è â ôóíêöèîíàëüíîì àíàëèçå. Â ðàáîòå òàêæå îáðèñîâàíû ñîîò-
íîøåíèÿ ìåæäó ïåðåõîäíûìè âåðîÿòíîñòÿìè ñëó÷àéíûõ ïðîöåññîâ, ýâîëþöèîííûìè ïîëó-
ãðóïïàìè, ýâîëþöèîííûìè óðàâíåíèÿìè è èõ ôóíäàìåíòàëüíûìè ðåøåíèÿìè. Ðàçëè÷íûå
ïîíÿòèÿ ôóíäàìåíòàëüíîãî ðåøåíèÿ îáñóæäàþòñÿ äëÿ ïðîöåññîâ Ëåâè ñ áåñêîíå÷íî ãëàä-
êèì ñèìâîëîì è äëÿ óñòîé÷èâûõ ñóáîðäèíàòîðîâ. Â ñëó÷àå ïðîöåññîâ Ëåâè ñ áåñêîíå÷íî
ãëàäêèì ñèìâîëîì íàéäåíî ôóíäàìåíòàëüíîå ðåøåíèå ñîîòâåòñòâóþùåãî ïðÿìîãî ýâîëþ-
öèîííîãî óðàâíåíèÿ è óñòàíîâëåíà ôîðìóëÿ Äþàìåëÿ äëÿ ðåøåíèÿ ñîîòâåòñòâóþùåé çàäà÷è

Íàóêà è Îáðàçîâàíèå. ÌÃÒÓ èì. Í.Ý. Áàóìàíà 51

http://technomag.bmstu.ru/doc/754986.html
http://technomag.bmstu.ru/doc/754986.html
http://technomag.bmstu.ru


Êîøè. Â ñëó÷àå (1/2)-óñòîé÷èâîãî ñóáîðäèíàòîðà íàéäåíî ôóíäàìåíòàëüíîå ðåøåíèå (ïå-
ðåõîäíàÿ âåðîÿòíîñòü) ïóòåì ðåøåíèÿ ýâîëþöèîííîãî óðàâíåíèÿ ñî (ñëàáîé) äðîáíîé ïðî-
èçâîäíîé Ðèìàíà | Ëèóâèëëÿ è ïîêàçàíî, ÷òî äðîáíàÿ ïðîèçâîäíàÿ Âåéëÿ ÿâëÿåòñÿ ìèíóñ
ñîïðÿæåííûì îïåðàòîðîì ê (ñëàáîé) ïðîèçâîäíîé Ðèìàíà | Ëèóâèëëÿ.
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