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Àííîòàöèÿ

Èçìåðåíèå ñèë ðåçàíèÿ ÿâëÿåòñÿ âàæíîé ñîñòàâëÿþùåé ðàçðàáîòêè è ïðîâåðêè òåõíî-
ëîãè÷åñêèõ ïðîöåññîâ. Èñïîëüçîâàíèå îáùåïðèíÿòûõ ïðÿìûõ ñèëîèçìåðèòåëüíûõ ñèñòåì
äëÿ ýòîé öåëè ÷àñòî íå ïðåäñòàâëÿåòñÿ âîçìîæíûì. Äàííàÿ ñòàòüÿ ïðåäëàãàåò êîñâåííûé
ìåòîä îöåíêè ñèëû ðåçàíèÿ â ïðîöåññå îáðàáîòêè òî÷åíèåì òîíêîñòåííîé öèëèíäðè÷åñêîé
îáîëî÷êè. Ìåòîä îñíîâûâàåòñÿ íà èçìåðåíèè ïåðåìåùåíèé ãèáêîé êîíñòðóêöèè | äåòàëè.
Áîëåå òîãî, ïðè òî÷åíèè öèëèíäðè÷åñêèõ îáîëî÷åê ïîÿâëÿåòñÿ íåîáõîäèìîòü èñïîëüçîâàíèÿ
áåñêîíòàêòíûõ äàò÷èêîâ ïåðåìåùåíèé. Â äàííîé ðàáîòå ðàññìàòðèâàåòñÿ êîíêðåòíàÿ òåõ-
íîëîãè÷åñêàÿ ñèñòåìà, â êîòîðîé äàò÷èêè ïåðåìåùåíèé ðàñïîëàãàþòñÿ âáëèçè ñâîáîäíîãî
òîðöà öèëèíäðè÷åñêîé îáîëî÷êè, êîòîðàÿ æåñòêî çàêðåïëåíà â ïàòðîíå òîêàðíîãî ñòàíêà.
Èçó÷àåòñÿ âîïðîñ îá èçìåðåíèè äâóõ êîìïîíåíò ñèëû ðåçàíèÿ | ðàäèàëüíîé è îêðóæíîé.
Ìîäåëü ðàçðàáîòàíà â êâàçè-ñòàòè÷åñêîì ïðèáëèæåíèè. Îïðåäåëåíî îïòèìàëüíîå óãëîâîå
ðàñïîëîæåíèå äâóõ äàò÷èêîâ ðàäèàëüíûõ ïåðåìåùåíèé, èñõîäÿ èç óñëîâèÿ ìèíèìèçàöèè
÷èñëà îáóñëîâëåííîñòè ìàòðèöû ëèíåéíîãî ïðåîáðàçîâàíèÿ, ñâÿçûâàþùåãî íåèçâåñòíûå
êîìïîíåíòû âåêòîðà ñèëû ðåçàíèÿ ñ èçìåðÿåìûìè ñèãíàëàìè.
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Introduction

In modern manufacturing, cutting forces measurement is a key element in understanding the
operational conditions during machining. Nevertheless, in some cases, the use of dynamometers
can be problematic, for instance in case of thin-walled workpieces in presence of instabilities:
due to the presence of resonances in the frequency response of the dynamometer itself can induce
significant perturbations in the measured signals. This was the case for [1]: the addition of the
dynamic system of the dynamometer can modify the conditions of the chatter onset.
In the present paper, we address the problem of quasi-static evaluation of the cutting force

during turning cylindrical shells. The cutting force components are estimated indirectly, from the
displacement measurements, with the help of the flexibility matrix, based on the elastic behavior
of the structure.
First, we find the relation between the applied concentrated force components and radial

displacements of the points, which radial displacements are actually measured.
Then, the question of the optimality of the sensors position is sought, in terms of the conditioning

of the flexibility matrix.

1. Description of the mathematical model

In this section, we develop a quasi-static analysis of the force-displacement relation applied
to the case of turning a thin-walled cylindrical shell. The cutting force is taken as concentrated.
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Thus, based on the radial displacement measurement by two proximity probes, the sought force
components can be expressed by means of the flexibility matrix.
The shell is shown in fig. 1. The left-hand edge of the shell is rigidly fixed, and the right-hand

edge is free.
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Fig. 1. Shell's dimentions and system of coordinates

In other words, the shell is supported like a cantilever with \clamped-free" boundary conditions.
Thickness of the shell is regarded as being much smaller than its diameter: h � D = 2R. We will
be using cylindrical coordinates: axial s and angular ϕ. An arbitrary point M belonging to the
middle surface of the shell is said to have coordinates (s, ϕ), as shown in fig. 1.
The shell is subjected to pin-load, which is represented by the two components of the cutting

force: radial FR and curcumferential FC , as shown in Fig. 2. We neglect the axial component of
the cutting force because it is always much smaller than the other two components [3], and because
the stiffness in the z-direction is much higher than in the other two directions. Forces FR and FC

act on the point with coordinates (sF , 0). We introduce Λ as a changeable dimensionless parameter
so that sF = ΛL, see (fig. 2). We can now write down the expression for the shell's thickness:

h(s) =

{
hfinif s < sF ;

hiniif s ≥ sF .
(1)

where hini is the shell's thickness before cutting and hfin is the shell's thickness after cutting.
Now Let us consider the free end of the shell (fig. 3). Two arbitrary points belonging to this

end are chosen: point A and point B. The angular location of these points is determined by
parameters Φ1 and Φ2, which is shown in fig. 3.
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Fig. 2. The components of the cutting
force and parameter Λ
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Fig. 3. The free end of the shell. Angular
location of the displacement sensors

Forces FR and FC , acting on the shell, cause it to deform. Total displacements of points A

and B are represented by axial u, circumferential v, and radial w components. In our study we
are interested only in radial components of the displacements of the two points since they can
be measured using displacement sensors. Since the system we are studying is linear, the relation
between the two components FR, FC of the cutting force and the radial displacements wA, wB of
points A and B is naturally expected to be linear and injective (one-to-one):

Af = e, (2)

where

A =

[
a11 a12

a21 a22

]
, f =

[
FC

FR

]
, e =

[
wA

wB

]
. (3)

From this moment on we will refer to matrixA as the flexibility matrix.
The main objective of our work is to estimate the two components of the cutting force (FC

and FR) given that the radial displacements of the two points A and B, caused by the force, are
known. In other words, we are to determine vector f . In order to do that, we will have to calculate
the flexibility matrix.
The process of calculation of matrix A is going to be solely numerical, as we shall see later

in this paper. The components of vector e are measured experimentally, and therefore, subject
to measurement errors. In order for the solution f = A−1e to be reliable, system (2) has to
be numerically stable. Because of these reasons, not only do we have to calculate matrix A,
which is addressed in Section 2, but we also have to ensure its numerical stability, which will
be discussed later in this paper. The question of numerical stability of the flexibility matrix is
addressed in Section 3.
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Given that the shell's geometry and material properties are not subject to variation, it is
apparent that the components of matrix A are dependant on the three variable parameters that we
have introduced earlier: A = A(Φ1, Φ2, Λ).

2. Calculation of the flexibility matrix

According to [4], the general system of equations for a Kirchhoff-Love thin-walled cylindrical
shell, which is shown in Fig. 1, can be written in the following form

∂u

∂s
=

1− ν2

Eh
T1 −

ν

R

( ∂v

∂ϕ
+ w

)
,

∂v

∂s
=

2(1 + ν)

Eh
S∗1 −

h2

3R2

∂θ1

∂ϕ
+

( h2

3R3
− 1

R

)∂u

∂ϕ
,

∂w

∂s
= −θ1,

∂θ1

∂s
=

12(1− ν2)

Eh3
M1 +

ν

R2

(∂2w

∂ϕ2
− ∂v

∂ϕ

)
,

∂

∂s
(RT1) = −∂S∗1

∂ϕ
+

Eh3

6R2(1 + ν)

(∂2θ1

∂ϕ2
− ∂2u

∂R∂ϕ2

)
−Rq1,

∂

∂s
(RS∗1) = − ν

R

∂M1

∂ϕ
− Eh3

12R3

( ∂2v

∂ϕ2
− ∂3w

∂ϕ3

)
− ν

∂T1

∂ϕ
− Eh

R

( ∂2v

∂ϕ2
+

∂w

∂ϕ

)
−Rq2,

∂

∂s
(RQ∗

1) = − ν

R

∂2M1

∂ϕ2
− Eh3

12R3

( ∂3v

∂ϕ3
− ∂4w

∂ϕ4

)
+ νT1 +

Eh

R

( ∂v

∂ϕ
+ w

)
−Rq3,

∂

∂s
(RM1) =

Eh3

6R(1 + ν)

( ∂2u

∂R∂ϕ2
− ∂2θ1

∂ϕ2

)
+ RQ∗

1.

where E is the Young modulus, ν is the Poisson's ratio, h is the shell's wall-thickness, R is the
shell's radius, u is the axial direction displacement, v is the circumferential direction displacement,
w is the radial direction displacement, θ1 is the surface normal's angular displacement, T1, S∗1 , Q∗

1,
M1 are the internal forces, and q1, q2, q3 represent the external loading. This is a linear system of
partial differential equations that may also be written in form

Ly = g, (4)

where L is a linear partial differential operator represented by (8×8) matrix and vector y is the
state vector:

y = (u, v, w, θ1, RT1, RS∗1 , RQ∗
1, RM1)

and vector g is the load vector:

g = −R · (0, 0, 0, 0, q1, q2, q3, 0).

System (4) belongs to the so-called class of separable systems, which means that it is possible
to separate variables s and ϕ with the aid of the Fourier method using complex Fourier series:

y =
+∞∑

k=−∞

y(k) · exp (ikϕ). (5)
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Vector y(k) depends only on variable s and is called the k-th harmonic of vector y. After separation
of variables, system (4) is decomposed into the infinite amount of linear 8-th order systems
of ordinary differential equations (ODE). Each of these ODE systems can be written in matrix
notation as follows

d

ds
y(k) = F(k) y(k) + g(k), (6)

where F(k) is (8× 8) constant square matrix:

F(k) =



0 − iνk

R
− ν

R
0

1− ν2

EhR
0 0 0

− ik

R
0 0 0 0

2(1 + ν)
EhR

0 0

0 0 0 −1 0 0 0 0

0 − iνk

R2
−νk2

R2
0 0 0 0

12(1− ν2)
Eh3R

A

R2
0 0 −A

R
0 − ik

R
0 0

0
Ehk

R

2

−B 0 − iνk

R
0 0 − iνk

R2

0 B C 0
ν

R
0 0

νk2

R2

−A

R
0 0 A 0 0 1 0


where

A =
Eh3k2

6R(1 + ν)
, B =

iEhk

R

(
1 +

h2k2

12R2

)
, C =

Eh

R

(
1 +

h2k4

12R2

)
.

We can formally express the concentrated cutting force as a distributed load using the Dirac
delta function. Keeping in mind that dim δ(x) = 1/ dim x, it is quite obvious that

(q1, q2, q3) = (0, FC , −FR) · δ(ϕ) δ(s− sF )

R
.

Using the Fourier series of the Dirac delta function

δ(ϕ) = (2π)−1

+∞∑
k=−∞

exp(ikϕ),

the load vector can be rewritten as

g(k) =
1

2π
(0, 0, 0, 0, 0, −FC , FR, 0) δ(s− sF ).

The left end of the shell (s = 0) is rigidly fixed, and the right end (s = L) is free. The
followings are the boundary conditions:(

u(k), v(k), w(k), θ1(k)

)
= 0 at s = 0;(

RT1(k), RS∗1(k), RQ∗
1(k), RM1(k)

)
= 0 at s = L.

(7)
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Here are the continuity conditions at point (s = sF ):

y(k)(sF + ε) = y(k)(sF − ε) +
1

2π
(0, 0, 0, 0, 0, −FC , FR, 0),

where ε is an infinitesimally small parameter.
System (6) along with boundary conditions (7) represent a boundary value problem. We have

used the initial parameters method [4] in order to solve this problem by means of numerical
integration. The Godunov orthogonalization method [5] was incorporated to ensure numerical
stability of the solution. Moreover, the method was further modified in order to eliminate the
well-known Gram-Schmidt process's weakness [6]. The Gram-Schmidt process was replaced by
the Householder transformation [7], which effectively performs the same thing| orthonormalizes
a set of vectors in the Euclidean space Rn.
Harmonicw(k)(L) that corresponds to the radial displacements of points located on the free end

of the shell, can be represented as a linear combination of the cutting force components:

w(k)(L) = FC · α(k) + FR · β(k),

where coefficientsα(k) and β(k) depend only on parameterΛ and have been obtained after numerical
integration of the boundary value problem for different harmonics. According to expression (5),

w(L, ϕ) =
+∞∑

k=−∞

(
FC α(k) + FR β(k)

)
exp (ikϕ).

According to the definition (see fig. 3), we can write that wA = w(L, Φ1) and wB = w(L,−Φ2).
Finally, according to formulas (2) and (3), matrixA can be represented as an infinite series

A =
+∞∑

k=−∞

 α(k) exp
(
ikΦ1

)
β(k) exp

(
ikΦ1

)
α(k) exp

(
−ikΦ2

)
β(k) exp

(
−ikΦ2

)
 .

It can be shown that the components of matrixA are always real numbers, which they must be, of
course, sinceA is the flexibility matrix.
Table. 1 shows the number of harmonics that we have had to take into account in order to meet

ε-accuracy. The criteria of meeting the required accuracy has been

‖AN+5 −AN‖ · ‖AN‖−1 ≤ ε.

Table 1

Number of harmonicsN corresponding to relative accuracy ε

ε 0.1 0.01 0.001 0.0001
N 10 17 25 32

If the above inequality is satisfied, thenwe consider approximationAN to be accurate enough. Note
that table. 1 represents approximate numbers of harmonics, since these numbers depend not only
on ε, but also on Λ, Φ1 and Φ2. In our work, we have set the relative accuracy to ε = 0.01 = 1%.
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Now that we know how to calculate matrix A, we can estimate the order of magnitude of
the displacements. The magnitude of the cutting force is approximately 102{103 N, according
to [3]. Using this data and our model, we have calculated that magnitudes of the displacements are
within 10−5 m.

3. Optimization of the displacement sensors location

We need to determine the best set of parameters Φ1 and Φ2 (the displacement sensors angular
location) that would make the system (2) as well-conditioned as possible. A measure of a square
matrix's numerical stability is called its condition number µ. By definition [6],

µ(A) = ‖A‖ · ‖A−1‖.

Condition number µ is always a positive number, and it cannot be less than one. The closer the
condition number µ of the flexibility matrix A is to one, the more well-conditioned this matrix is.
Therefore, to ensure the best numerical stability of the linear transformation (2) we must minimize
the condition number µ of matrixA. Let us construct the target function:

f(Φ1, Φ2) = max
Λ

[
µ
(
A(Φ1, Φ2, Λ)

)]
. (8)

To accomplish our optimization goal we have to minimize f :

f → min .

We have implemented the brute force approach minimizing function f . Angular increment
has been set to 0.1◦, and the increment for parameter Λ has been set to 0.05. Color plot of
function µ−1

(
A(Φ1, Φ2, 1)

)
is shown in fig. 4.

Fig. 4. Color plot of inverse condition number µ−1(A) with Λ = 1
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We have chosen to analyze function inverse to the condition number because this function is
normalized: its range of values lies inside interval (0, 1). The diargram features 20 major local
maxima (see Table 2). The best choice of parameters is Φ1 = Φ2 = 20.4◦, which corresponds to
the target function value of 1.2.

Strictly speaking, this value is the global minimum of function f(Φ1, Φ2). However, in practical
terms, any of the displacement sensors configurations from Tables 2 and 3 can be chosen because
magnitude of f for any of those configurations does not even exceed 10.

Table 2

Local extrema of f

Code Φ1 Φ2 f

AS 20.4◦ 20.4◦ 1.2

BS 30.6◦ 30.6◦ 1.5

C1 66.6◦ 24.3◦ 1.5

C2 24.3◦ 66.6◦ 1.5

DS 77.7◦ 77.7◦ 2.8

ES 89.3◦ 89.3◦ 1.9

F1 119.4◦ 83.5◦ 2.4

F2 83.5◦ 119.4◦ 2.4

GS 136.2◦ 136.2◦ 2.7

HS 149.5◦ 149.5◦ 1.7

Table 3

Local extrema of f

Code Φ1 Φ2 f

I1 208.3◦ 137.5◦ 1.8

I2 222.5◦ 151.7◦ 1.8

J1 241.1◦ 83.5◦ 2.0

J2 276.5◦ 119.9◦ 2.0

K1 268.5◦ 78.6◦ 2.0

K2 281.5◦ 91.5◦ 2.0

L1 293.5◦ 25.3◦ 1.4

L2 334.7◦ 66.5◦ 1.4

M1 329.3◦ 20.5◦ 1.2

M2 339.5◦ 30.7◦ 1.2

It means that at the worst case scenario we could lose 1{2 significant digits [6] calculating the
components of the cutting force using equation (2), which corresponds to relative accuracy ε =

10−10. Such loss is not significant in comparison with other sources of error in our model. Four
most preferable symmetrical displacement sensors configurations are shown in fig. 5, 6, 7 and 8.
In these figures, the free end of the shell is shown and the displacement sensors angular locations
correspond to fig. 3.

Fig. 5. Conf. AS.
Φ1 = Φ2 = 20.4◦

Fig. 6. Conf. BS.
Φ1 = Φ2 = 30.6◦

Fig. 7. Conf. ES.
Φ1 = Φ2 = 20.4◦

Fig. 8. Conf. HS.
Φ1 = Φ2 = 30.6◦
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Conclusions

In this work we have developed a mathematical model in order to be able to calculate the
flexibility matrix that makes it possible to estimate the cutting force components based on displace-
ment measurement in turning cylindrical shells. Analysis of the behavior of the flexibility matrix
condition number has been performed. Based on this analysis, optimal configurations of the dis-
placement sensors location have been suggested. These configurations make the flexibility matrix
well-conditioned and the process of calculating the components of the cutting force numerically
stable.
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