НАУКА и ОБРАЗОВАНИЕ

Эл № ФС77 - 48211. Государственная регистрация №0421200025. ISSN 1994-0408

электронный научно-технический журнал

О выборе базиса для моделирования движения провода ЛЭП методом Галеркина # 09, сентябрь 2013 DOI: 10.7463/0913.0602290

Иванова О. А. УДК 533.6.011

Россия, МГТУ им. Н.Э. Баумана ivanovaolgaal@mail.ru

Введение

Известно, что провода воздушных линий электропередачи (ЛЭП), находящиеся под воздействием поперечного ветра, подвержены пляске (галопированию) — высокоамплитудным низкочастотным колебаниям [1]. Высокие динамические нагрузки, действующие на провода и арматуру ЛЭП при пляске, могут привести к их повреждению, поэтому в последние десятилетия активно разрабатываются алгоритмы и программы для численного моделирования аэроупругих колебаний проводов. Наиболее распространенным методом решения данной задачи является метод конечных элементов [2, 3], однако применяются также метод конечных разностей [4] и метод Галеркина [5].

Характер движения провода ЛЭП во многом определяется собственными формами и частотами его малых свободных колебаний. Поэтому при моделировании движения проводов решение часто ищется в виде разложения по собственным формам, при этом нахождение числа собственных форм, которые необходимо учитывать для получения качественно и количественно верного результата, является актуальной задачей. Известно [6], что в зависимости от тяжения первой собственной частоте колебаний провода в плоскости его начального провисания отвечает либо симметричная собственная форма, либо антисимметричная. По этой причине можно ожидать, что поведение провода в воздушном потоке в зависимости от тяжения будет иметь качественно различный характер. Однако в некоторых работах (например, [2]) в расчете используется лишь одна собственная форма, при этом неясно, каков будет результат расчета при использовании большего числа форм. В данной работе исследована зависимость параметров пляски провода ЛЭП в воздушном потоке от числа используемых базисных функций при решении задачи методом Галеркина.

1. Постановка задачи

В качестве модели провода принята модель абсолютно гибкого стержня (нити) [7], линейно упругого по отношению к растяжению. Его движение описывается уравнениями

$$\begin{cases} \frac{\partial}{\partial\xi} \left(\frac{Q(\xi,\tau)}{1+Q(\xi,\tau)\alpha^{-1}} \frac{\partial x_i(\xi,\tau)}{\partial\xi} \right) + C_i + q_i^a(\xi,\tau) - \delta_{i3} - \frac{\partial^2 x_i(\xi,\tau)}{\partial\tau^2} = 0, \quad i = 1, 2, 3, \\ \left(\frac{\partial x_1(\xi,\tau)}{\partial\xi} \right)^2 + \left(\frac{\partial x_2(\xi,\tau)}{\partial\xi} \right)^2 + \left(\frac{\partial x_3(\xi,\tau)}{\partial\xi} \right)^2 = \left(1 + \frac{Q(\xi,\tau)}{\alpha} \right)^2. \end{cases}$$
(1)

Здесь введены следующие безразмерные параметры: $\xi \in [-0,5;0,5]$ — дуговая координата на нерастянутом проводе; τ — время; $Q(\xi, \tau)$ — тяжение; α — жесткость на растяжение; $x_i(\xi, \tau)$, i = 1, 2, 3, — декартовы координаты точки провода (рис. 1); C_i — функция, зависящая от скорости движения провода и задающая внутреннее демпфирование; $q_i^a(\xi, \tau)$, i = 1, 2, 3, — распределенная аэродинамическая сила. Ускорение свободного падения g направлено противоположно оси Ox_3 и его влияние в уравнениях (1) представлено слагаемым δ_{i3} (δ_{ij} — дельта Кронекера). При приведении к безразмерному виду величины, имеющие размерности длины, массы и силы, отнесены соответственно к длине, массе и весу провода; время отнесено к $\sqrt{L/g}$, где L — длина нерастянутого провода.

Рис. 1. Расчетная схема

В качестве начального условия для системы (1) принимается равновесное положение провода $x_{i0}(\xi)$, i = 1, 2, 3, и равновесное тяжение $Q_0(\xi)$ [8]. В дальнейшем будем искать решение в виде

$$x_i(\xi,\tau) = x_{i0}(\xi) + u_i(\xi,\tau), \quad i = 1, 2, 3, \quad Q(\xi,\tau) = Q_0(\xi) + \Delta Q(\xi,\tau),$$

где $u_i(\xi, \tau)$ и $\Delta Q(\xi, \tau)$ — отклонения от равновесной формы провода и равновесного тяжения соответственно. Концы провода считаются закрепленными неподвижно:

$$u_i(\pm 0,5,\tau) = 0, \quad i = 1,2,3.$$

2. Решение уравнений движения провода методом Галеркина

В соответствии с методом Галеркина отклонения провода от положения равновесия представляются в виде линейной комбинации некоторого набора базисных функций, в качестве которых целесообразно выбрать собственные формы малых свободных колебаний провода:

$$u_i(\xi,\tau) = \sum_{k=1}^{S_i} a_k^{(i)}(\tau)\varphi_k^{(i)}(\xi), \quad i = 1, 2, 3.$$
(2)

Здесь S_1 , S_2 , S_3 — число базисных функций. Такой подход позволяет, во-первых, корректно моделировать динамику провода, а во-вторых, задать внутреннее демпфирование в соответствии с общепринятым подходом пропорциональным частоте колебаний в виде

$$C_i(\xi,\tau) = 2\beta \sum_{k=1}^{S_i} \omega_k^{(i)} \frac{\partial a_k^{(i)}(\tau)}{\partial \tau} \varphi_k^{(i)}(\xi),$$

где β — коэффициент демпфирования; $\omega_k^{(i)}$ — k-я собственная частота колебаний в направлении оси Ox_i .

Изменение тяжения $\Delta Q(\xi, \tau)$ также представляется в виде линейной комбинации некоторого набора базисных функций, например, тригонометрических:

$$\Delta Q(\xi,\tau) = \sum_{k=1}^{S_Q} a_k^{(Q)}(\tau) \varphi_k^{(Q)}(\xi),$$

$$\varphi_1^{(Q)} = 1, \quad \varphi_2^{(Q)} = \sqrt{2} \sin 2\pi\xi, \quad \varphi_3^{(Q)} = \sqrt{2} \cos 2\pi\xi \quad \text{ и т. д.}$$

Здесь S_Q — число базисных функций. Отметим, что при $S_Q = 1$ изменение тяжения будет постоянным вдоль пролета, как это предполагается, например, в работах [4, 5]: $\Delta Q(\xi, \tau) = a_1^{(Q)}(\tau)$. Заметим также, что в работе [4] равновесное тяжение Q_0 тоже считалось постоянным вдоль пролета.

3. Определение аэродинамической нагрузки

Для определения величины распределенной аэродинамической силы, действующей на провод, применим общепринятый подход, в соответствии с которым обтекание всех сечений провода считается плоскопараллельным, а удельная нагрузка в каждом конкретном сечении равна

$$(0, q_a^2, q_a^3)^{\mathrm{T}} = \frac{1}{2} \rho_{\mathrm{bogg}} b V_{\mathrm{oth}}^2(\boldsymbol{\tau}_V C_{xa}(\vartheta) + \boldsymbol{\nu}_V C_{ya}(\vartheta)),$$

где $\rho_{\text{возд}}$ — плотность воздуха; b — хорда (диаметр) провода; $V_{\text{отн}}$ — относительная скорость ветра для данного сечения; τ_V , ν_V — орты, направленные вдоль $V_{\text{отн}}$ и перпендикулярно ему; $C_{xa}(\vartheta)$, $C_{ya}(\vartheta)$ — стационарные аэродинамические коэффициенты профиля сечения, известные из эксперимента или расчета, зависящие от угла атаки ϑ — угла между вектором $V_{\text{отн}}$ и хордой профиля.

Далее в расчетах приняты следующие зависимости аэродинамических коэффициентов профиля сечения провода от угла атаки (рис. 2): $C_{xa}(\vartheta) = 2,0 + 0,2\cos\vartheta$, $C_{ya}(\vartheta) = -1,5\sin 2\vartheta$. Данные зависимости в окрестности $\vartheta = 0$ количественно и качественно соответствуют аэродинамическим коэффициентам профиля с U-образным обледенением [3]. Кроме того, для выбранных зависимостей $C_{xa}(\vartheta)$ и $C_{ya}(\vartheta)$ в области $\vartheta \in [-0,37;0,37]$ выполнено условие неустойчивости Глауэрта — Ден-Гартога $C_{xa}(\vartheta) + C'_{ya}(\vartheta) < 0$.

Рис. 2. Зависимости аэродинамических характеристик от угла атаки

4. Собственные частоты и формы малых колебаний провода

На рис. З приведены зависимости квадратов безразмерных собственных частот малых колебаний провода в плоскости начального провисания от стрелы провеса $w = |x_{30}(0)|$, обратно пропорциональной тяжению, при значении $\alpha = 6906$. Из графика видно, что при значении стрелы провеса $w \approx 0,022$ первая собственная форма меняется с симметричной (четной функции ξ) на антисимметричную (нечетная функция ξ). На рис. 4 для примера приведены две первые собственные формы колебаний в направлении оси Ox_3 при значениях стрелы провеса w = 0,018 и w = 0,030. Собственные формы найдены методом сагиттарной функции [9].

Рис. 3. Зависимость квадратов собственных частот от стрелы провеса

Рис. 4. Собственные формы $\varphi_1^{(3)}$ и $\varphi_2^{(3)}$

5. Результаты расчетов и их анализ

В расчетах с различным числом базисных функций для отклонений провода и его тяжения принималось, что жесткость провода на растяжение $\alpha = 6906$; стрела провеса принимала значения w = 0,018 и w = 0,030; число базисных функций для всех перемещений было одинаковым: $S_1 = S_2 = S_3 = S$.

В случае сравнительно малой стрелы провеса w = 0,018, когда тяжение велико и первая форма колебаний является симметричной, во всех расчетах была получена периодическая траектория движения провода; колебания представляли собой стоячую волну. В табл. 1 приведены значения удвоенной амплитуды (размаха) колебаний провода. Частота колебаний во всех расчетах была приближенно равна 13,2, за исключением расчета при $S = S_Q = 1$, в котором она была близка к 13,1.

	S = 1	S = 2	S = 4	S = 6	S = 8
$S_Q = 1$	0,0086	0,0086	0,0084	0,0083	0,0083
$S_Q = 3$	_	0,0086	0,0084	0,0084	0,0083

Таблица 1. Размах колебаний провода при малой стреле провеса

Приведенные в таблице данные показывают, что увеличение числа базисных функций приводит к незначительному, на 2-3 процента, уменьшению размаха колебаний. Частота колебаний практически не меняется. Проведенные расчеты демонстрируют, что при моделировании колебаний сильно натянутого провода достаточно использовать по одной базисной функции в каждом направлении.

В случае стрелы провеса w = 0,030 движение провода имеет качественно другой характер (табл. 2). Проведя расчет с одной базисной функцией в каждом направлении, можно, как и в предыдущем примере, получить движение в форме стоячей волны. Увеличение числа базисных функций до двух приводит к решению в форме бегущей волны. Дальнейшее увеличение числа базисных функций вид решения качественно не меняет, добавление третьей и четвертой форм колебаний приводит к уточнению решения на 38%, пятой и шестой еще на 7%. Использование большего числа базисных функций представляется нецелесообразным, поскольку оно практически не оказывает влияния на решение. Количество S_Q базисных функций для тяжения провода должно быть согласовано с числом S базисных функций для перемещений.

	S = 2	S = 4	S = 6	S = 8
$S_Q = 1$	0,0115	0,0086	0,0083	0,0054
$S_Q = 3$	0,0112	0,0086	0,0086	0,0073
$S_Q = 5$	0,0110	0,0081	0,0076	0,0076

Таблица 2. Размах колебаний провода при увеличенной стреле провеса

Заключение

Проведенные расчеты показывают, что для корректного моделирования движения провода ЛЭП методом Галеркина одной базисной функции, как это делается во многих известных работах, в общем случае недостаточно. Это особенно актуально для пролетов ЛЭП с большими стрелами провеса и сравнительно малым тяжением. В этом случае колебания представляют собой суперпозицию бегущих волн и установившееся движение отдельных сечений провода не является периодическим. В то же время для сильно натянутых проводов колебания имеют вид стоячей волны, установившееся движение сечений провода — периодическое, и для описания колебаний провода достаточно использовать по одной базисной функции (собственной форме малых колебаний) в каждом направлении.

Работа выполнена при финансовой поддержке гранта Президента РФ для государственной поддержки молодых российских ученых — кандидатов наук (проект МК–6482.2012.8) и гранта Президента РФ для государственной поддержки ведущих научных школ (проект НШ-255.2012.8).

Список литературы

- 1. EPRI. Transmission Line Reference Book, Wind Induced Conductor Motion. Palo Alto (California): Electrical Power Research Institute, 1979. 255 p.
- Desai Y.M., Yu P., Popplewell N., Shah A.H. Finite Element Modelling Of Transmission Line Galloping // Comp. and Struct. 1995. Vol. 57. P. 407–420.
- 3. Wang X., Lou W.-J. Numerical Approach to Galloping of Conductor // Proc. of the 7th Asia-Pacific Conference on Wind Engineering. Taipei, Taiwan, 2009. 8 p.
- Сергей И.И., Виноградов А.А. Численное моделирование эксплуатационных статических и динамических режимов проводов ВЛ и кабелей // Электрические станции. 1998. № 1. С. 41–49.
- Luongo A., Zulli D., Piccardo G. Analytical and Numerical Approaches to Nonlinear Galloping of Internally Resonant Suspended Cables // Journal of Sound and Vibration. 2008. Vol. 315, no. 3. P. 375–393.
- 6. Irvine H.M., Caughey T.K. The Linear Theory of Free Vibrations of a Suspended Cable // Proceedings of the Royal Society of London. Ser. A. 1974. Vol. 341. P. 299–315.
- Светлицкий В.А. Механика абсолютно гибких стержней / Под ред. А.Ю. Ишлинского. М.: Изд-во МАИ, 2001. 432 с.
- Иванова О.А. Приближенные методы определения собственных частот колебаний проводов многопролетных линий электропередач // Вестник МГТУ им. Н.Э. Баумана. Естественные науки. 2011. Спец. выпуск ««Прикладная математика»». С. 34–44.
- 9. Akulenko L., Nesterov S. High-precision methods in eigenvalue problems and their applications. Boca Raton, CRC Press, 2004. 235 p.

SCIENCE and EDUCATION

EL Nº FS77 - 48211. Nº0421200025. ISSN 1994-0408

electronic scientific and technical journal

Choice of basis for simulation of ETL wire by the Galerkin method

09, September 2013 DOI: 10.7463/0913.0602290 Ivanova O. A.

> Bauman Moscow State Technical University 105005, Moscow, Russian Federation ivanovaolgaal@mail.ru

A problem of building a system of base functions suitable for solving motion equations of a wire by the Galerkin method was considered in this paper. Dependence of the peak-to-peak amplitude of oscillations on the number of base functions was studied by a test example. Two sets of wire parameters were considered; wire motion is qualitatively different for these sets. Use of one base function in each direction is reasonable for a taut wire and it leads to an error less than 4%. For a slack wire usage of not less than six base functions is required for correct simulation of wire motion.

References

- 1. *EPRI Transmission Line Reference Book: Wind Induced Conductor Motion*. Palo Alto, California, Electrical Power Research Institute (EPRI), 1979. 255 p.
- Desai Y.M., Yu P., Popplewell N., Shah A.H. Finite Element Modelling of Transmission Line Galloping. *Computers and Structures*, 1995, vol. 57, no. 3, pp. 407–420. DOI: 10.1016/0045-7949(94)00630-L.
- 3. Wang X., Lou W.-J. Numerical Approach to Galloping of Conductor. *Proc. of the 7th Asia-Pacific Conference on Wind Engineering*. Taipei, Taiwan, 2009. 8 p.
- Sergey I.I., Vinogradov A.A. Chislennoe modelirovanie ekspluatatsionnykh staticheskikh i dinamicheskikh rezhimov provodov VL i kabeley [Numerical simulation of static and dynamic operation condition of wires of overhead lines and cables]. *Elektricheskie stantsii*, 1998, no. 1, pp. 41–49.
- Luongo A., Zulli D., Piccardo G. Analytical and Numerical Approaches to Nonlinear Galloping of Internally Resonant Suspended Cables. *Journal of Sound and Vibration*, 2008, vol. 315, no. 3, pp. 375–393.

- 6. Irvine H.M., Caughey T.K. The Linear Theory of Free Vibrations of a Suspended Cable. *Proceedings of the Royal Society of London. Ser. A*, 1974, vol. 341, pp. 299–315.
- 7. Svetlitskiy V.A. *Mekhanika absolyutno gibkikh sterzhney* [Mechanics of absolutely flexible rods]. Moscow, MAI Publ., 2001. 432 p.
- Ivanova O.A. Priblizhennye metody opredeleniya sobstvennykh chastot kolebaniy provodov mnogoproletnykh liniy elektroperedach [Approximate methods to determine eigenfrequencies of wire oscillations in multi-span transmission lines]. *Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki* [Herald of the Bauman MSTU. Ser. Natural science], 2011, spets. vyp. "Prikladnaya matematika" [spec. iss. "Applied mathematics"], pp. 34–44.
- 9. Akulenko L., Nesterov S. *High-precision methods in eigenvalue problems and their applications*. Boca Raton, CRC Press, 2004. 235 p.