Другие журналы

научное издание МГТУ им. Н.Э. Баумана

НАУКА и ОБРАЗОВАНИЕ

Издатель ФГБОУ ВПО "МГТУ им. Н.Э. Баумана". Эл № ФС 77 - 48211.  ISSN 1994-0408

77-30569/230378 Экспериментальные исследования гидродинамических параметров потоков жидкости в дроссельных каналах

# 10, октябрь 2011
Файл статьи: Шабаловский_P.pdf (901.21Кб)
авторы: Кузнецов В. С., Шабловский А. С., Трошин Г. А.

УДК. 62- 62 543.2:532.528

МГТУ им. Н.Э. Баумана

e10bmstu@rambler.ru

Shabl@bmsty.ru

Из анализа литературных источников [1, 2, 3, 4] следует, что в 70 – 80–ые годы прошлого столетия в отечественной науке велись достаточно обширные исследования гидродинамики потоков жидкости в дроссельных каналах при возникновении в них кавитационных явлений. Однако механизм процессов, сопровождающих такие течения, в полной мере раскрыть не удалось.

В целях накопления знаний в области рассматриваемых вопросов на стендах кафедры «Гидромеханики, гидромашин и гидропнемоавтоматики» МГТУ им. Н.Э.Баумана  проводятся экспериментальные исследования процесса истечения воды в атмосферу из дроссельных каналов цилиндрической (рис. 1) и плоской щелевидной форм (рис. 2). Модели дроссельных устройств изготовлены из полированного оргстекла. Дроссельный канал плоской щелевидной формы позволяет как бы разрезать осесимметричный поток в цилиндрическом канале и, следовательно,  оценить гидродинамические параметры потока в его поперечных сечениях.

Следует отметить, что исследование гидродинамики потоков в плоских щелевидных и осесимметричных каналах предпринимались и ранее. Однако оценки возможности анализа  гидродинамики потока в осесимметричных каналах на основе данных полученных при исследовании плоских потоков в явном виде не приводилось.

В настоящей статье излагаются некоторые результаты экспериментальных исследований, целью которых являлось:

1.      Выяснение принципиальной возможности судить о гидродинамических процессах в осесимметричных потоках на основе изучения течения жидкости в плоских щелевидных дроссельных каналах;

2.      Оценка возможности нарушения сплошности потока жидкости в дроссельных каналах.

Критериями оценки возможности анализа некоторых гидродинамических процессах в осесимметричном потоке на основе изучения процесса течения жидкости  в плоском щелевидном канале на первом этапе исследований предполагались:

- одинаковость качественной и количественной степени зависимости поля распределения давления  в дроссельном канале от давления на его входе;

-  степень визуальной идентичности гидродинамических процессов движения жидкости в осесимметичном и плоском дроссельных каналах.

 

В процессе эксперимента измерялись:

1.        В цилиндрическом канале (рис. 1) – избыточное давление на входе (рвх) и величина вакуума в двух точках 1 и 2 на поверхности стенки канала;

В щелевидном канале (рис. 2) – избыточное давление на входе (рвх) и  в десяти точках внутри канала в соответствии со схемой приведенной на рисунке;

2.        Атмосферное давление;

3.        Температура жидкости в струе на выходе.

Избыточное давление измерялось с помощью образцовых манометров класса точности 0,4, а вакуум с помощью образцового  вакуумметра класса точности 0,25. Для измерения атмосферного давления применялся образцовый барометр, а для измерения температуры - ртутный лабораторный термометр.

Рис. 3.

На рис. 3 приведены полученные на основе эксперимента графики изменения величины абсолютного давления в двух точках т. 1 и т. 2 цилиндрического дроссельного канала  и в сходных с ними (в геометрическом отношении) точках т. 6 и т. 7 плоского щелевидного дроссельного канала в функции от абсолютного давления на входе рвх

Рис 4.

На рис. 4 приведены результаты измерения давления в точках с т. 3 по т. 10 плоской модели в функции от давления на входе рвх .

В процессе эксперимента проводилась съемка потока жидкости в исследуемых дроссельных каналах с помощью видеокамеры с разным временем экспозиции каждого кадра. Минимальное время экспозиции кадра составляло 1/8000 сек. Технические возможности видеокамеры позволяли производить покадровую съемку с частотой 25 Гц.

                                

а) время экспозиции  1/25 сек.                                б) время экспозиции 1/8000 сек.

Рис. 5

На рис. 5а приведена фотография потока жидкости в цилиндрическом дроссельном канале снятая с выдержкой 1\25 сек., а на рис. 5б фотография того же потока, но при выдержке 1/8000 сек.

                 

а)  время экспозиции  1/25 сек.                               б) время экспозиции 1/8000 сек.

в) фотография содержания полости между потоком и стенкой канала при большом увеличении

Рис. 6

На рис.6а приведена фотография потока в плоском дроссельном  канале при времени фиксации кадра 1/25 сек, а на рисунках 6б того же потока выполненные при времени фиксации кадра 1/8000 сек.

 

Из анализа результатов экспериментальных исследований следует:

1. Приведенные на рис. 3 результаты эксперимента позволяют сделать вывод о качественном и, в известной мере, количественном совпадении характера изменения давления в сходных точках кавитационной полости цилиндрического дроссельного канала и его плоской модели в функции от давления на входе. Некоторый сдвиг между графиками изменения давления в сходных точках кавитационной полости цилиндрического канала и плоской модели отчасти вероятно связан с тем, что точка т. 2 дроссельного канала расположена на расстоянии от входной кромки 12 мм, а точка 7 плоской модели расположена на расстоянии 15 мм.

Приведенные данные, а также визуально наблюдаемое сходство гидродинамической картины потока в кавитационной зоне (рис. 5 и 6), позволяют утверждать, что о некоторых гидродинамических процессах в осесимметричных потоках можно судить на основе изучения их плоских моделей.

2. Из графиков, приведенных на рис. 4 следует, что внутри ядра потока давление всегда выше, чем на его границе. Минимальное давление на границе ядра потока, как в цилиндрической, так и в плоской моделях всегда превышало давление насыщенного пара (при данных термодинамических параметрах)  на 800 – 1500 Па. Из этих графиков следует, что внутри ядра потока давление всегда выше, чем на его границе. Следовательно, если давление в замкнутой полости (в том числе и на границе ядра потока) не может быть ниже давления насыщенного пара протекающей жидкости, а давление внутри ядра всегда выше давление на его границе, то можно предположить, что возникновение газовой, а тем более паровой кавитации внутри ядра потока мало вероятно. Следовательно, разрыв сплошности потока невозможен. Этот же вывод следует и из анализа видеофильма, визуализирующего гидродинамическую картину потока в диапазоне изменения давления на входе от минимального до давления, соответствующего переходу от безотрывного режима истечения к отрывному.

3. Фотография, представленная на рис. 5б, указывает на нестабильность геометрии кавитационной зоны в хвостовой ее части. Из фотографий представленных на рис. 5в следует, что из ядра потока в кавитационную полость постоянно выделяется газ, содержащийся в жидкости. Очевидно, что масса газа в газовой полости растет во времени. В результате в  полости  взрастает давление. Это в свою очередь вызывает рост силы давления газа на поверхность потока и, как следствие, к изменению количества движения массы жидкости в ядре потока, приводящее к изменению геометрии хвостовой части каверны и пульсации в ней давления.

 

Список литературы

1.                  Сиов Б.Н.  Истечение жидкости через насадки. М.: Машиностроение, 1968. 140 с.

2.                  Бирюков О.Я., Котлов А.Б., Фомичев В.М. Влияние противодавления  на гидравлические характеристики дросселирующего устройства. Деп. в ВИМИ сборник «Рипорт» №1, 1974, № ВМ ДР00959.

3.                  Попов Д.Н., Отрошко П.В., Бочаров А.Г., Кузнецов В.С., Кавитационные течения вязкой жидкости в дроссельных устройствах. Вестник машиностроения,1980, №2, с. 5-8.

4.                  Попов Д.Н., Отрошко П.В., Бочаров А.Г., Кузнецов В.С., О влиянии противодавления на кавитационные течения жидкости в дроссельных устройствах. Вестник машиностроения,1981, №11, с. 68-70.

 


Тематические рубрики:
Поделиться:
 
ПОИСК
 
elibrary crossref ulrichsweb neicon rusycon
 
ЮБИЛЕИ
ФОТОРЕПОРТАЖИ
 
СОБЫТИЯ
 
НОВОСТНАЯ ЛЕНТА



Авторы
Пресс-релизы
Библиотека
Конференции
Выставки
О проекте
Rambler's Top100
Телефон: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)
  RSS
© 2003-2024 «Наука и образование»
Перепечатка материалов журнала без согласования с редакцией запрещена
 Тел.: +7 (915) 336-07-65 (строго: среда; пятница c 11-00 до 17-00)